телефон в шапке

+7-999-464-41-16

site-name-en

Изображение в левую колонку

Contact Us

Our address:
Russia, 630099,
Novosibirsk,
ul. Kamenskaya, 56
(map)
Tel. editorial office:
8-999-464-41-16
advertising manager:
8-913-717-81-96
Materials for publication should be addressed to:
E-mail: sfs@nsuem.ru

© Novosibirsk
State University
of Economics and Management

When reprinting and using
materials, a link to the journal
"Siberian Financial School"
is mandatory

Requisites

INN 5406011041
(Taxpayer Personal
Identification Number)

KPP 540601001
(code of reason
for registration)

FTD in the Novosibirsk Region
(NSUEM private account 20516X20720)
Beneficiary bank::
СИБИРСКОЕ
ГУ БАНКА РОССИИ//УФК
по Новосибирской области
г. Новосибирск
BIC 015004950
ОКТМО
(Russian National Classification
of Municipal Territories)
50701000
Currency bank account
03214643000000015100

Predicting the riskiness of investing in oil company stocks using artificial neural networks

You are here

Pages: 
56-63
UDC Code: 
334.758.4:338.45:622.276:004.7
Rubric: 

This article considers the problem of forecasting stock prices using the example of the largest oil companies in Russia (Rosneft, Lukoil, Gazpromneft and Surgutneftegaz) using artificial neural networks, and also analyzes the profitability of an investment portfolio formed from ordinary shares of the four largest oil companies in Russia in equal shares and with optimal their value determined in the course of solving the direct problem according to the G. Markowitz model using predictive values.

References: 
1. Gubina A.A., Atazhanova L.D., Sagitova N.S., Rakhmatullina Yu.A., Farkhieva S.A. Analysis of factors affecting the value of shares of energy companies, Sibirskaya finansovaya shkola, 2021, no. 2(142), pp. 91–94. (In Russ.)

2. Ayuev V.V., Belov Yu.S., Loginov B.M., Loginova M.B. Neirosetevoe modelirovanie v NeuroSolutions. [Neural network modeling in NeuroSolutions], Kaluga: Izdatel'stvo MGTU im. N.E. Baumana, 2015, 324 p.

3. Beloliptsev I.I., Gorbatkov S.A., Romanov A.N., Farkhieva S.A. Modelirovanie upravlencheskikh reshenii v sfere ekonomiki v usloviyakh neopredelennosti [Modeling of management decisions in the field of economics under conditions of uncertainty], Moscow: INFRA-M, 2019, 299 p.

4. Vygodchikova I.Yu. Tools for making decisions about investing in large Russian companies using a hierarchical ranking procedure and a minimax approach, Prikladnaya informatika, 2019, vol. 14, no. 6, pp.123–137 (In Russ.)

5. Gorskii M.A., Sokerin P.O., Yurkevich E.A. Features of application of optimal portfolio models in emerging stock markets, Vestnik Altaiskoi akademii ekonomiki i prava, 2020, no. 5-1, pp. 40–52. (In Russ.)

6. Nazarova E.V., Zhdanova O.A. Investment portfolio formation and optimization models, Uchenye zapiski Rossiiskoi Akademii predprinimatel'stva, 2017, vol. 16, no. 1, pp. 111–117. (In Russ.)

7. Nazarova V.V., Levichev I.P. Development of a model for improving the efficiency of investment portfolio management, Ekonomicheskii zhurnal Vysshei shkoly ekonomiki, 2017, vol. 21, no. 3, pp. 451–481. (In Russ.)

8. Ivanyuk V.A., Abdikeev N.M. Managing market assets in a crisis, Upravlencheskie nauki, 2018, vol. 8, no. 1, pp. 72–81. (In Russ.)

9. Yarosh A.A., Rakhmatullina Yu.A. The mechanism of formation of the optimal investment portfolio of securities according to the Markovitz model on the example of shares of the largest oil companies of the Russian Federation, Sibirskaya finansovaya shkola, 2021, no. 1 (141), pp. 43–47. (In Russ.)