телефон в шапке

+7 (383) 278 85 74
900-1800,(GMT+6), Mon.–Fri.

logo-inside

site-name-en

Изображение в левую колонку

Contact Us

Our address:
Novosibirsk,
ul. Polzunov, 7
(4th floor, office 47);
Tel.:

editorial office
:
+7 (383) 278-85-74; 217-44-23

N Belyaeva, managing editor:
+7 (383) 279-73-83 (phone/fax)

M Semekhina, advertising manager:
Materials for publication should be addressed to:
630051, Novosibirsk,
p.o.b. 34
Siberian academy of finance and banking
E-mail: md_sifbd@nnet.ru
For subscription and purchase of the magazine:
E-mail: semehinam@mail.ru


Схема проезда
Private educational institution of higher education
© Siberian Academy of Finance and Banking


Journal of «Sibirskoye Soglashenie» Interregional association

For permission to use
«SFS Journal» materials,
please apply to the SFS
Journal editorial office

Requisites

Taxpayer Identification 5402106870
Account No 40703810110000000005
In «Accept» Joint Stock Commercial
Bank, Novosibirsk
Correspondent Account
No 30101810200000000815
Bank Identification Code 045004815
National Classifier of National Economy
Branches 92110
General Classifier of Organizations
of Russia 16925131

Identification of the direction of distortion financial statements

You are here

Pages: 
129-133
UDC Code: 
336.027
Rubric: 

The skorring-technique of identification of signs and the directions of a manipulation is offered by data of the financial reporting. On the example of charge coefficient to total assets (TAT) calculated for the public companies of a food industry of Russia by means of a clusterization method the data set is divided into three distributions submitting to the normal law. On the basis of studying of real sets manipulation borders are received by the reporting and the companies which are presumably distorting the reporting towards overestimate or understating of its data are determined.

Files: 
References: 
1. Na pravilnom puti: Ros. obzor ekon. prestupleniy za 2014 g. / PWC. URL: https://www.pwc.ru/ru/ceo-survey/assets/crime_survey_2014.pdf (data obrashcheniya: 10.11.2016).

2. Vzglyad v budushchee s umerennym optimizmom: Ros. obzor ekon. prestupleniy za 2016 g. / PWC. URL: http://www.pwc.ru/ru/recs2016.pdf (data obrashcheniya: 10.11.2016).

3. Benish M.D. The Detection of Earning Manipulation // Financial Analysts Journal. 1998. Vol. 55, no 5. P. 24-36.

4. Sloan R.G. Do Stock Prices Fully Reflect Information in Accruals and Cash Flows about Future Earnings // Accounting Review. 1996. Vol. 71, no 3. P. 283-315.

5. Saveleva M.Yu., Alekseev M.A., Dudin S.A. O kachestve sostavleniya otcheta o dvizhenii denezhnyh sredstv v rossiyskih kompaniyah // Sibirskaya finansovaya shkola. 2016. no 3. S. 142-146.

6. Glinskiy V.V., Serga L.K., Chemezova E.Yu., Zaykov K.A. Ob ocenke porogovyh znacheniy v reshenii zadachi klassifikacii dannyh // Voprosy statistiki. 2014. no 12. S. 30-36.

7. Alekseev M.A. Problemy primeneniya pokazatelya manipulirovaniya k finansovoy otchetnosti rossiyskih predpriyatiy // My prodolzhaem tradicii rossiyskoy statistiki: materialy I Otkrytogo ros. stat. kongr., Novosibirsk, 20-22 okt. 2015 g. Novosibirsk: NGUEU, 2015. S. 578-579.

8. Baza dannyh po rossiyskim kompaniyam, otraslyam i regionam. URL: http://kontragent.skrin.ru/dbsearch/dbsearchru/ (data obrashcheniya: 10.11.2016).